Analog Directional MEMS Microphone

1. Characteristics

- Directional from 20 Hz to 20 kHz
- Smallest total solution size
- Dual sound ports
- Differential or singled ended output
- 67.5 dBA SNR
- 1% THD at 108 dB SPL
- AOP at 128 dB SPL
- 115 μA supply current
- 3.50 x 2.65 mm² footprint
- -40 to 85 °C operating temperature

2. Applications

- · AR and VR Headsets
- Automotive
- Conferencing Devices
- Laptops and Tablets
- OTC Hearing Aids
- Smart Speakers
- Stereo Recording
- Wearables
- Webcams
- Wireless Audio

3. Description

The SKR0600 is a directional MEMS microphone with 67.5 dB SNR which enables integration in small formfactor devices and a configurable polar pattern.

The high SNR of the SKR0600 allows greater integration flexibility while maintaining high performance. The port spacing, tube length, and port size can be reduced to package the SKR0600 into portable, space constrained devices, bringing the benefits of directional microphones to product categories such as TWS, hearing aids, and mobile.

The flexibility offered by the SKR0600 also extends to the directional characteristics. The transducer of the SKR0600 was designed to reduce the impact on performance of acoustic meshes. With this, the microphone can be adjusted to exhibit a hypercardioid or cardioid polar pattern with an SNR of 65.0 dB by adding the appropriate acoustic mesh.

The SKR0600 is the most flexible microphone offering available from Soundskrit. The SKR0600 is suited for applications where the smallest size, highest performance, or maximum directionality is desired. These directional microphones ensure high quality audio with low background noise is possible in all consumer electronics of any form factor.

4. Functional Block Diagram

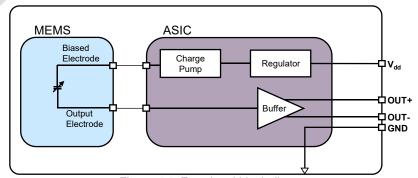


Figure 4.1: Functional block diagram

5. Table of Contents

1. Characteristics	1
2. Applications	1
3. Description	1
4. Functional Block Diagram	1
5. Table of Contents	2
6. Typical Application Circuit	3
7. Specifications	4
7.1 Acoustic and Electrical Specifications	4
7.2 Specification Calculation Details	5
7.3 Absolute Maximum Ratings	6
7.4 Performance Curves	7
8. Mechanical, Packaging, and Manufacturing Information	9
8.1 Mechanical Dimensions	9
8.2 Land Pattern and Solder Stencil	9
8.3 CAD Models	9
8.4 Packaging and Ordering Information	10
8.5 Protective Tape and Reflow Profile	11
8.6 Product Marking	
9. Acoustic Design Reccomendations	13
10. Reliability Specifications	14
11. Device and Documentation Support	15
11.1 Application Notes	15
11.2 Additional Support	
12. Devision History	15

6. Typical Application Circuit

The SKR0600 can be operated normally with V_{dd} from 1.6 – 2.0 V and 2.2 – 3.6 V. V_{dd} should not be set from 2.0 V – 2.2 V.

A 0.1 μ F capacitor should be placed between V_{dd} and GND as close to the microphone as possible to reduce supply noise. A capacitor, C_{out} , should be used to block the microphone's DC output from the application processing input. This capacitor a creates high-pass filter according to $C_{out} = 1/\pi f_c R_{AP}$ (e.g. 80 nF), where f_c (e.g. 20 Hz) is the desired cutoff frequency and R_{AP} (e.g. 100 kOhm) is the application processor resistance.

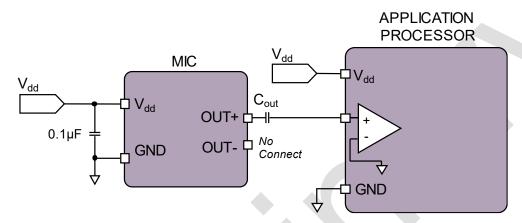


Figure 6.1: Typical single-ended application circuit

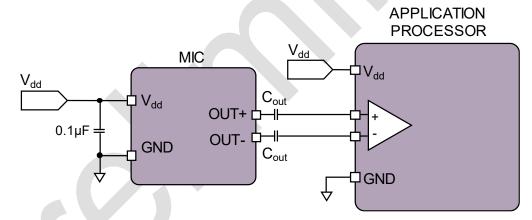


Figure 6.2: Typical differential application circuit

7. Specifications

7.1 Acoustic and Electrical Specifications

Test conditions throughout full datasheet unless otherwise indicated: $25 \, ^{\circ}\text{C}$, $55 \pm 20\%$ R.H., $V_{dd} = 1.8 \, \text{V}$, differential, 3 m away, 10 mm acoustic path length¹, no load, bottom (PCB) port facing toward loudspeaker. 0° is defined as the port hole on the PCB.

Parameter	Symbol	Condition	Min. Typ. Max.	Unit
Pickup Pattern			Dipole (figure-8)	
Polarity		Increasing sound pressure at top port	Increasing output voltage	
		Increasing sound pressure at bottom port	Decreasing output voltage	
Average Directivity Index ²		Integrated from 20 Hz to 20 kHz	4.8	dB
Null Angle			90, 270	0
Supply Voltage	V_{dd}		1.7 1.8 2.0 2.2 2.8 3.6	- v
Supply Current	I _{dd}	$V_{dd} = 1.8 \text{ V}$ $V_{dd} = 2.8 \text{ V}$	115 160	μА
Sensitivity	S	94 dB SPL, 1 kHz, Single-Ended 94 dB SPL, 1 kHz, Differential	-32 -31 -30 -26 -25 -24	dBV/Pa
		Single-Ended	-91	
Noise Floor		Differential	-85	dBV(A)
		20 Hz to 20 kHz, 94 dB SPL, Single-Ended	67.5	
Signal to Noise Ratio ³	SNR	20 Hz to 20 kHz, 94 dB SPL, Differential	67.0	dB(A)
T. (111)	TUD	94dB SPL, 1kHz	<0.1	%
Total Harmonic Distortion ⁴	THD	1% THD, 1 kHz	108	4D CDI
Acoustic Overload Point	AOP	10% THD, 1 kHz	128	dB SPL
Resonant Frequency	Fres		3.3	kHz
		75 Hz	0	
Phase Response		1 kHz	-19	0
		3 kHz	-96	
		250 Hz	68	
Group Delay		600 Hz	55	μs
2.5up 25.uy		1 kHz	54	
		4 kHz	96	<u> </u>
Power Supply Rejection	PSRR	200 mV _{pp} sine wave on V _{dd} at 1 kHz, Single- Ended	67	- dB
Ratio	TORK	200 mV _{pp} sine wave on V _{dd} at 1 kHz, Differential	62	dB
Power Supply Rejection PS	PSR+N	200 mV _{pp} 7/8 duty cycle rectangular waveform @ 217 Hz on V _{dd} , A-weighted, BW = 22.4kHz, Single-Ended	-85	dBV(A)
	F3R+N	200 mV _{pp} 7/8 duty cycle rectangular waveform @ 217 Hz on V _{dd} , A-weighted, BW = 22.4kHz, Differential	-84	UBV(A)
DC Voltage Output		$V_{dd} = 1.8 \text{ V}$	0.836	V
		V _{dd} = 2.8 V	1.336	•
DC Offset		OUT+ to OUT-	±10	mV
Output Impedance	Z _{out}		100	Ω
Startup Time		Sensitivity within 1 dB of final value, outputs AC coupled	15	ms

4

¹ The acoustic path length is the minimum distance a soundwave must travel between the ports of the microphone. See Acoustic Path Length Definition for details.

² The directivity index is a measure of directionality based on the ratio of direct sound to diffuse sound captured. See <u>Directivity Index Calculation</u> for details.

³ A directional microphone has a non-flat frequency response, as such the SNR must be calculated for the entire frequency range. See <u>SNR Calculation</u> for details.

⁴ To calculate the THD of a microphone with a non-flat frequency response, the frequency response must first be equalized. See <u>THD Calculation</u> for details.

7.2 Specification Calculation Details

Acoustic Path Length Definition

The acoustic path length is the minimum distance a sound wave must travel around the microphone package between the two ports. The SKR0600 is designed to perform best with path lengths found in end-products, which are typically 10 mm or greater. All specifications are measured with a standard 10 mm path length, the minimum recommended path length when integrating the device.

Directivity Index and Average Directivity Index Calculation

The **directivity index** (DI) measures the ratio of the microphone output for a sound positioned directly in front of the microphone ($\theta = 0^{\circ}$) versus sound with the same amount of total acoustic power coming from all directions equally. The directivity index at each frequency is calculated with the equation below.

$$DI = 10log_{10} \left(4 \frac{amplitude(\theta = 0)^2 \left[\frac{V^2}{Pa^2} \right]}{\int_0^{2\pi} amplitude(\theta)^2 \left[\frac{V^2}{Pa^2} \right] |sin\theta| d\theta} \right)$$

Equation 7.1: Directivity Index

The average directivity index is calculated by logarithmically weighting the directionality index at each frequency and then taking the average of these weighted values from 20 Hz to 20 kHz.

For microphones with cardioid polar patterns which reduce noise from the rear rather than the sides, the **unidirectional index** (UI) is used. UI measures the ratio of the microphone output for a sound positioned in front of the microphone versus sound with the same amount of total acoustic power coming from the back of the microphone. Both omnidirectional microphones and dipole microphones have a UI of 0 dB.

SNR Calculation

The SNR of a directional microphone with a non-flat frequency response must be calculated differently than the typical method used for omnidirectional microphones that have a flat frequency response. Instead of only using the 1 kHz sensitivity, the electrical noise of the microphone at each frequency (units of V^2/Hz) must be divided by the corresponding sensitivity squared at each frequency (units of V^2/Pa^2) to obtain the input referred acoustic noise at each frequency (units of Pa^2/Hz). Then, the acoustic noise is A-weighted by multiplying it by the A-weighting factor (A_w) and this A-weighted acoustic noise is integrated over the full audio bandwidth and converted to an equivalent sound pressure level (dBA SPL) by dividing by the reference pressure (P_{ref} =20 μ Pa). Finally, the SNR is calculated by subtracting the integrated input referred noise from 94 dB SPL. The equation for the calculation is shown below.

$$SNR = 94 - 20 \log_{10} \left(\frac{1}{\frac{1}{P_{ref}^{2}[Pa^{2}]}} \int_{20Hz}^{20kHz} \frac{noise\left[\frac{V^{2}}{Hz}\right]}{sensitivity\left[\frac{V^{2}}{Pa^{2}}\right]} A_{w} df[Hz] \right)$$

Equation 7.2: Full-spectrum SNR calculation

THD Calculation

THD is calculated by playing an acoustic sine wave at a specific sound pressure level and frequency and dividing the sum of the powers of the harmonic components of the captured signal by the power of the fundamental frequency. To calculate the THD of a microphone with a non-flat frequency response, the response must first be equalized to equally weigh the fundamental frequency and its respective harmonics.

For more information on these calculations, refer to the app note: <u>AN-110: Attributes of Soundskrit Directional</u> Microphones.

7.3 Absolute Maximum Ratings

Meeting or exceeding the conditions listed as Absolute Maximum Ratings could permanently damage the devices. Operating the devices at these ratings could impact device reliability.

Parameter	Absolute Maximum Rating	Unit
V _{dd} to GND	5.0	V
Input Current	±5	mA
Storage Temperature	-40 to 100	°C
Operating Temperature	-40 to 85	°C

7.4 Performance Curves

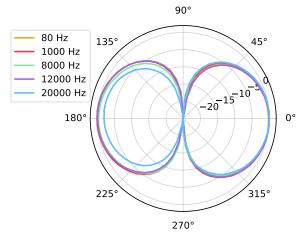


Figure 7.1: Pickup pattern vs. frequency

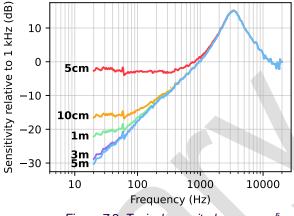


Figure 7.2: Typical magnitude response⁵

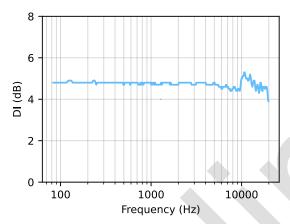


Figure 7.3: Directionality index vs frequency

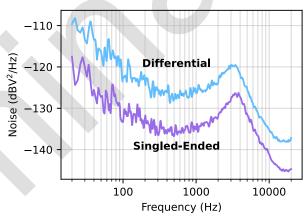


Figure 7.4: Typical noise floor

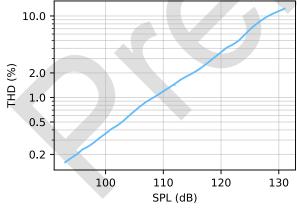


Figure 7.5: Typical THD (1 kHz) vs SPL

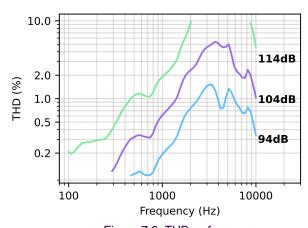


Figure 7.6: THD vs frequency

 $^{^{5}}$ The increased bass response at close distances is known as the 'Proximity Effect.' See $\underline{\text{AN-}110}$ for details.



Figure 7.7: Input voltage vs supply current

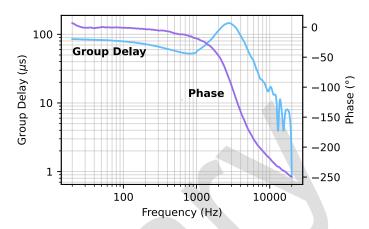


Figure 7.8: Typical phase and group delay

8. Mechanical, Packaging, and Manufacturing Information

8.1 Mechanical Dimensions

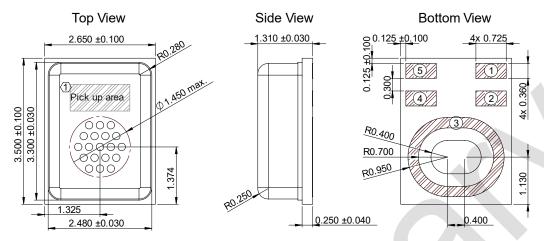


Figure 8.1: Mechanical drawings (mm)

Table 8.1: Mechanical specifications

Item	Dimensions (mm)
Length	3.500 ± 0.100
Width	2.650 ± 0.100
Height	1.310 ± 0.030
Lid Port Array OD	1.450 max
Bottom Acoustic Port	1.200 x 0.800 ± 0.050
PCB Thickness	0.250 ± 0.030

Table 8.2: Pinout

OUT+	Non-Inverted Output Signal
OUT-	Inverted Output Signal
GND	Ground
V_{dd}	Power Supply
	GND

Additional Note:

• The pick-up area begins 0.25 mm from any edge or the port hole.

8.2 Land Pattern and Solder Stencil

Figure 8.2 Example land pattern (mm)

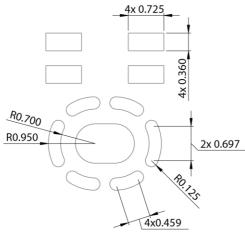


Figure 8.3 Example solder stencil pattern (mm)

8.3 CAD Models

The CAD model for this microphone is available here: SKR0600 STEP File

A KiCAD compatible layout and footprint is available here: KiCAD Layout

8.4 Packaging and Ordering Information

Soundskrit follows JEDEC moisture classification standards.

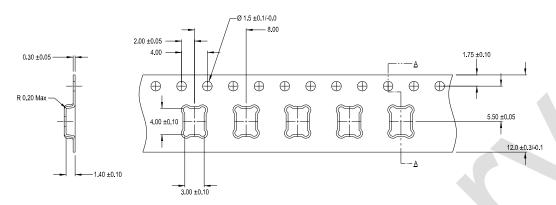


Figure 8.4 Reel dimensions (mm)

Table 8.3: Ordering Information

Model Number	Reel Diameter	Quantity per Reel
SKR0600-7	7"	1500
SKR0600-13	13"	5000

l able 8.4:	Packaging I	Information

Component	Surface Resistance (Ω)
Reel	10 ⁵ to 10 ¹²
Carrier Tape	10 ⁵ to 10 ¹¹
Cover Tape	10 ⁵ to 10 ¹²

8.5 Protective Tape and Reflow Profile

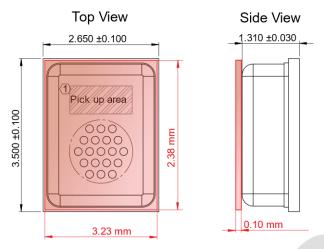


Figure 8.5: Mechanical drawing with protective tape

The microphone is packaged with a layer of reflow compatible Kapton tape covering the top port as pictured in Figure 8.5. This tape is to protect the microphone during assembly. Do not remove the Kapton tape prior to soldering the microphone or nearby components. To remove, use wide tweezers to catch the edge of the tape from the top side.

Below is the recommended reflow profile for soldering the microphone.

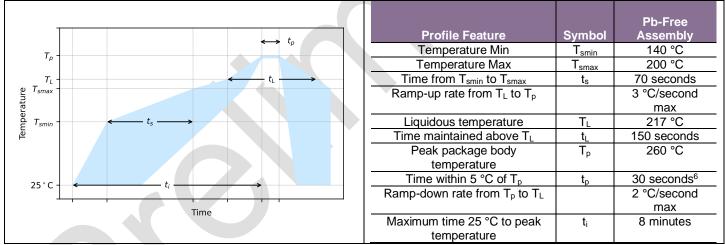
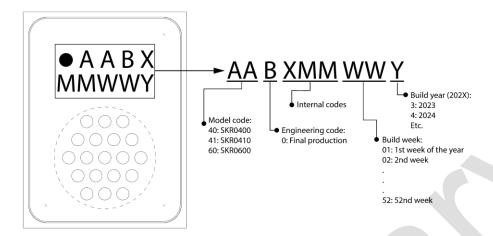


Figure 8.6: Reflow profile

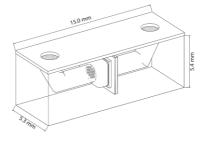
Additional notes:


- Use reflow profile standard J-STD-020D
- The SKR600 is classified as MSL 3
- Do not remove the Kapton tape prior to reflow

 $^{^6}$ Tolerance for peak profile temperature (T_P) is defined as a supplier minimum and a user maximum.

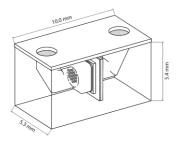
8.6 Product Marking

Engineering samples of the microphone were available using other marking schemes. If the microphone marking does not match the above or does not have the honeycomb array port opening see the prior revision of this datasheet here: SKR0600 Preliminary Datasheet Rev -



9. Acoustic Design Recommendations

Below are several configuration options that show how key parameters, such as acoustic channel length, acoustic path length, and acoustic mesh resistance, can be adjusted to modify the polar pattern and solution size when using the SKR0600. For more detail on integrating the SKR0600 into a product, please reach out to contactus@soundskrit.ca.


High-performance Dipole 'V' Configuration

Design Parameters			
Channel Length	15.8mm		
Path Length	12mm		
Front Mesh	0		
Rear Mesh	0		

Performance C	haracteristics
SNR	67.5 dB
DI	4.8 dB
UI	0 dB

Compact Dipole 'V' Configuration

Design Parameters			
13mm			
8mm			
0			
0			

Performance Characteristics		
SNR	65 dB	
DI	4.8 dB	
UI	0 dB	

High-performance Hypercardioid 'V' Configuration

Design Parameters			
Channel Length	15.8mm		
Path Length	12mm		
Front Mesh	0		
Rear Mesh	360 Rayl		

Performance Characteristics		
SNR	66 dB	
DI	4.94 dB	
UI	6.03	

10. Reliability Specifications

The microphone sensitivity must deviate by no more than 1 dB from the initial value after 3 reflow cycles for the reflow test and no more than 3 dB for the other tests.

Test	Test Condition	Standard
ESD-CDM	3 discharges of ±500 V with direct contact to I/O pins	JS002-2018
ESD-HBM	3 discharges of ±2 kV with direct contact to I/O pins	JS001-2017
ESD-LID/GND	3 discharges of ±8 kV with direct contact to lid while unit is under bias	IEC-61000-4-2
High Temperature Bias	+125 °C for 1,000 hours under bias	JESD22 A-108F
High Temperature Storage	+125 °C for 1,000 hours	JESD22 A-103E
Latch up	Trigger current from ±200mA	JESD 78F
Low Temperature Bias	-40 °C for 1,000 hours under bias	JESD22 A-108F
Low Temperature Storage	-40 °C for 1,000 hours	JESD22-A119A
Mechanical Shock	5 shocks of 10,000 g / 0.1 msec in each direction of ±x, ±y, ±z, 30 shocks in total	IEC 60068-2-27
Reflow	3 reflow cycles with +260 °C peak temperature	IPC-JEDEC J-STD-020E
Temperature Humidity Bias	+85 °C/85% R.H. for 1,000 hours under bias	JESD22-A101D
Thermal Shock	100 cycles, air-to-air, -40 °C to +125 °C, 15 minutes soak	JESD22.A104E
Vibration	4 cycles of 4 minutes each in each x, y, z axis from 20 Hz to 2000 Hz with peak acceleration of 20 G	

11. Device and Documentation Support

11.1 Application Notes

AN-100: Comparing Soundskrit Directional Microphones to Omnidirectional Microphones

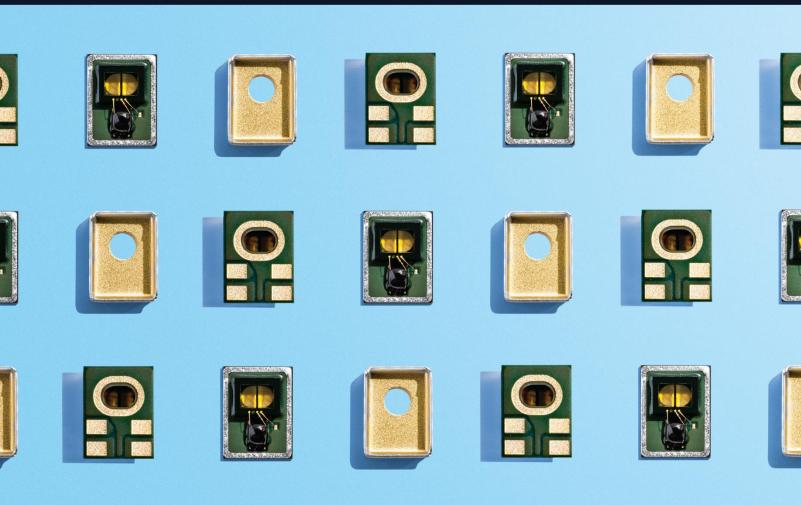
AN-110: Attributes of Soundskrit Directional Microphones

AN-210: Designing Linear Arrays with Directional Microphones

11.2 Additional Support

For additional design and applications support, please reach out to applications@soundskrit.ca.

Soundskrit offers a suite of software algorithms to take full advantage of the utility our microphones provide. With a range from lightweight linear DSP tools to multichannel, machine learning based processing, we have a solution to meet any performance requirements. For more information, contact us or head to soundskrit.ca/software


12. Revision History

Revision Label	Revision Date	Sections Revised
-	August 2023	Preliminary release
А	February 2024	Updated mechanical packaging, added reference design information

Soundskrit developed the first high-performance directional MEMS microphone on the market, leveraging years of research in bio-inspired MEMS based on how spiders and other insects in nature hear. In combination with Soundskrit's in-house audio processing algorithms, directional microphones can be used to capture and isolate any sound in an environment with a fraction of the size, power, and computation of traditional omnidirectional-based microphone arrays.

Soundskrit was founded in 2019 and is headquartered in Montreal, Quebec with an R&D facility in Ann Arbor, Michigan.

